
Taking your game online:
Fundamentals of coding online games

Joost van Dongen

7th July 2005

Website: www.oogst3d.net
E-mail: tsgoo@hotmail.com

Abstract

This article is an introduction to programming the online functionality for
a game. We take a look at the architecture to use, which will be either
client/server or peer to peer, and discuss whether to use TCP or UDP as the
protocol for sending messages over the internet. We then proceed to show an
example of how an online game may work, including what messages to send
and which computer is responsible for deciding what. This basic online game
is then improved with extrapolation and a more efficient use of bandwidth.
Finally, fending off cheaters and the use of libraries to make creating online
games easier are briefly discussed. This article does not focus on the low-
level technical details of programming online games on a specific platform,
nor does it focus on creating fun games or beautiful art.

1

Contents

1 Introduction 3

2 Bandwidth and latency 5
2.1 Bandwidth . 5
2.2 Latency . 5

3 Identifying the requirements of the game 5
3.1 Play by mail . 6
3.2 Turn based games . 6
3.3 Real time games . 6
3.4 Other requirements . 7

4 Choosing the best architecture 8
4.1 Peer to peer . 8
4.2 Client/server . 8

5 TCP versus UDP: choosing the right protocol 9
5.1 TCP . 10
5.2 UDP . 10
5.3 Headers . 11
5.4 Conclusion . 11

6 A practical example 11
6.1 Responsibilities and communication during gameplay 12
6.2 Reliable and unreliable messages 12
6.3 Finding and starting an online game 13

7 Ways to improve performance 14
7.1 Smooth animations with extrapolation 14
7.2 Latency on player actions . 16
7.3 Reducing bandwidth usage 16

8 Cheaters and libraries 18
8.1 Beating cheaters . 18
8.2 Using programming libraries to ease the work 19

9 Conclusion 20

2

1 Introduction

Today many game design companies are creating online games. Doing so
is not an easy task: lots of computers must communicate and decide what
is happening in a virtual world. Which computer is responsible for what?
What messages are sent over the internet to which player? After that has
been settled, the real problems begin: the game must run smooth even on
relatively old computers with slow internet connections. Taking all of this
into account, it is clear that programming an online game is a complex job.
In this article we will see the basics of programming online games and the
ideas behind it. The focus will fully be on programming and not on creating
a game that is fun or innovative. Also, there will not be much technical
detail: actual coding is different for each programming language and oper-
ating system, so this article takes a look at a higher level of abstraction:
what messages are being sent, who is responsible for what, how can things
be optimised. However, before diving into online game programming, let’s
see why so many companies are creating internet games.

Games are big business

Online games are big business. One of the greatest successes so far is the pc
game World of Warcraft by Blizzard, which has over two million subscribers
[1]. Unlike most other games, World of Warcraft requires players to pay
a monthly fee. This fee varies from eleven to thirteen euro per month [2],
earning Blizzard over 22 million euro each month. A recent addition to
the world of online gaming is the console market. Playstation 2, X-Box
and Nintendo Gamecube have online gaming services since fall 2002 [3].
The successors of these consoles, expected to reach the marked before the
end of 2006, will focus strongly on multiplayer gaming. One of the most
famous online console games is Bungie’s Halo 2 for Microsoft’s X-Box gaming
console. Halo 2 made one hundred million dollar on its first day [4], which
is more than any movie ever made on the day of its introduction. Although
Halo 2 has a singleplayer mode, it is intended to be played online.

The facts above all show the same thing: online gaming has grown huge.
A lot of money is at stake and publishers will probably demand online
gaming as a feature in almost every game being made. Programming such
online games is very hard and influences many aspects of how the entire game
is coded. If a game is coded without taking online gaming into account, it
might take a lot of time to add this feature afterwards. For this reason,
every game programmer should have some knowledge about programming
for online enabled games.

3

Figure 1: Screenshots from World of Warcraft and Halo 2. Both games
were very successful and allow many players to play together and against
each other over the internet.

What we will see

This article is an introduction into the basic aspects of online coding. It
starts by explaining the demands for different types of games, followed
by the most used architectures, like peer-to-peer and client/server, and an
explanation of which internet protocol to use. After that we will see a prac-
tical example of how an online game may be structured. This basic example
works, but is not really playable, so after that it is improved to become
smooth and efficient. Finally, two topics are briefly discussed: preventing
cheating and using libraries to ease the job. Especially cheating is a very
important subject for online games, because it will make the player’s gaming
experience much less fun. However, this topic is too large to discuss fully in
this article and we will therefore only give a brief introduction into fending
off cheaters.

4

2 Bandwidth and latency

Before starting off, two important concepts need to be clear to the reader,
as they will be used a lot throughout the rest of this article.

2.1 Bandwidth

The first one is bandwidth, which is the number of bytes that can be sent
from one computer to another per second. This can be either over the
internet or on a local network in a company, although the bandwidth of the
internet is usually much lower. Bandwidth is very important, as we cannot
exceed the maximum bandwidth and this is a strong limitation on commu-
nications for online gaming. If a game tries to send too much data, this
might take several seconds and will slow down communications. Therefore
limiting traffic is very important. What this maximum bandwidth exactly
is, differs from one internet connection to another. Today it usually varies
from twenty kilobytes per second to five hundred kilobytes per second [5].
On some connections this may be even more, while older computers might
still have a limitation of only five kilobytes per second.

2.2 Latency

The other important concept is latency. Latency is the time it takes for one
computer to send a message to another computer. If a message is sent over
a local network, latency may be as low as five milliseconds, while over the
internet it can rise to one second, which is extremely long in the world of
computers. As we will see later, it can even rise to as much as 50 seconds, but
this is extremely rare. For the internet, we can generally expect latencies of
somewhere between 25 en 200 milliseconds. These numbers may be verified
by playing first person shooters online, which usually show the latency for
each player. In some cases the term “ping” is used in stead of latency. Ping
is the time it takes a message to get from one computer to another and
back. Latencies tend to vary a lot from moment to moment, so in some
cases it is more useful to use the average latency over the last few seconds
instead of the latency for a single message. Latency is an important issue
when creating online games, as latency makes it impossible to make different
computers do the same thing at exactly the same time.

3 Identifying the requirements of the game

Requirements are the basis of what is being developed, so the first thing
we will discuss is what performance a specific game demands. Is the game
fast-paced or actually quite slow? Will there be a few or many messages
to send each second? These and other points strongly influence almost all

5

other design decisions. The first thing to decide is the type of gameplay for
the game. Online games can be categorized into three types, each with their
own characteristics [6]:

1. Play by mail

2. Turn based games

3. Real-time games

3.1 Play by mail

Play by mail means that players act and then press a button to have their
moves sent to the other players. This type of game is very slow and a player
might actually stop playing and continue the next day. Games of this type
typically take days or even weeks or months to finish. An example of this
is chess-by-mail, where one player makes a move, sends his move to his
opponent using a letter and receives his opponent’s next move a couple of
days later. If this is the type of game being developed, creating an online
game becomes quite easy. There is no need to worry about bandwidth and
latency problems; even keeping a connection open with other players will
not be necessary. The only thing that does not get easy here is preventing
cheating. Unfortunately, in modern gaming hardly any games are played by
mail, so the simplicity of this genre is not enjoyed much.

3.2 Turn based games

A turn based game is quite a bit like play by mail, only with a much higher
speed. Turns may take minutes in some cases, but in most cases only take
about ten seconds. Again bandwidth and latency are hardly a problem
here, as the player expects the game to play in turns and not continuously.
Although most games today are not turn based, quite some real time games
may be transformed into turn based ones. Age of Empires for instance seems
real time to the player, but internally is actually turn based, which made pro-
gramming it a lot easier, as is explained by Paul Bettner and Mark Terrano
in their article on the professional game design website gamasutra.com [7].

3.3 Real time games

The final type of online games is real time games. These are games where the
player can take action at any moment and actions must immediately have
effect. The pace of such games may differ from the relative slowness of a
realistic flight simulator to the incredible speed of a first person shooter like
Quake III. As player actions must have effect immediately, latency is a very
important problem here and we will have to take measures to compensate
for the slowness of the internet. Also, lots of things may be happening at the

6

Figure 2: Although in Ensemble Studios’ game Age of Empires gameplay
seemed smooth to the player, it was actually implemented turn-based with
about five turns per second.

same time, so keeping bandwidth usage as low as possible is very important
here. In general, the faster the game, the harder it is to get the online game
to run smoothly. In this article we will focus on real time games because
they are the hardest and therefore most interesting type of online game to
program.

3.4 Other requirements

After we have identified the type of online play, some more things will have to
be decided in order to know the demands of a game. First comes the number
of players that will play simultaneously. The internet does not have a way
to do effective multicasting (i.e. sending the same message to more than one
computer), so if all players should know about something, we will have to
send the same message to every player. This can take much bandwidth if
many players are online, so we will need ways to minimize bandwidth.

Another thing that might use a lot of bandwidth and therefore needs
to be identified before starting to code, is the number of interactive entities
in the world. If the player controls lots of characters, this might take a lot
of communication. Finally, we must identify what hardware and internet
connection our target audience has. If we know that part of the users still
has old 56k modems, this will strongly limit our online possibilities.

7

4 Choosing the best architecture

Once we know what the demands of our online game are, the next step is
to choose the architecture for the communications. This can be either peer
to peer or client/server. Many variations exist for specific game types with
special requirements, but we will only discuss these two here.

4.1 Peer to peer

Peer to peer is the simplest architecture to understand. Every player con-
nects to every other player. If an event occurs at one computer, this com-
puter will send a message to every other computer. The idea is very simple,
but it results in some serious problems. The greatest problem is that we will
have to send each message to every other player. This means that if there
are N players, this will require N-1 messages for a single event, which will
quickly fill all the available bandwidth. This also requires N2 connections
for the entire game, as every computer needs to be connected to every other
computer.

If the number of players is low, this may be acceptable, but bandwidth is
not our only problem. Which computer is to calculate what? For example,
if each computer calculates collisions, then it might be that one computer
decides there is a hit and another computer decides there is a miss. This can
happen, as latency creates small differences between the states of the world
at different computers. If there are different outcomes, which computer is
right? This will require some smart design to solve.

Peer to peer does have some great benefits, though. If one player discon-
nects, the other players can continue playing, as no one player is the leader.
Also, calculations can be spread, so no one computer will have to calculate
collisions and events for the entire world. If our virtual world is very large,
this is a great benefit. Finally, each player is running the game in the same
way, so the programmer will not have to write different code for the server
and the clients, as is necessary in the client/server architecture.

4.2 Client/server

Although peer to peer has some important benefits, client/server is the most
used architecture in today’s games. In client/server, each player connects
to one specific server, which is the leader of the game. This server may be
either a normal player whose computer has a special role, or an external
server run by the game publisher.

Client/server has a number of benefits, but also some problems. The
greatest benefit is that the required bandwidth is low on all the clients, as
they will only have to communicate with the server. The required bandwidth
for the server however will be quite high, but possibly not much higher than

8

Figure 3: On the left peer to peer, on the right client/server. Grey lines
indicate connections over which messages are being sent.

for any computer in peer to peer. The smart thing to do is to choose as the
server the computer with the highest bandwidth, or have an external dedi-
cated server at the game design company that has a very high bandwidth.
Another benefit of client/server is that the server is the leader, so only the
server does important calculations like collision detection. The server then
just tells all the other computers what has happened and they can update
their game state. This way responsibilities are clear: the server is always
right.

Client/server has its downsides too. The first one is that it requires
a lot of bandwidth at the server, which may not always be available. If
the server is run at the game publisher, this is no problem, but running
dedicated servers is very expensive and will have to continue for years after
the game was first released. If a normal player is the server, there is another
problem: when the server disconnects, the game ends. We might solve this
by making another player become the server when the server disconnects or
his bandwidth drops too much, but this requires some clever coding.

Which architecture is best varies from game to game, although client/server
does win in most cases and we will use it in the rest of this article. Choosing
the right architecture should be a well considered decision.

5 TCP versus UDP: choosing the right protocol

Any online game will have to send messages from one computer to another.
Such communication over the internet can be done using one of two different
protocols: UDP and TCP. The reason we need a protocol, is that computers
will have to communicate with each other and using a protocol makes that
possible. TCP and UDP handle getting messages from one computer to
another over the internet or a network. Both have different properties, so
the right one should be used. We do not really have a choice here as one is

9

clearly better than the other, but first let’s see what the characteristics of
UDP and TCP are.

5.1 TCP

Let’s start with TCP. TCP is the standard protocol for the regular internet
and is used, for instance, when a website is viewed in a browser. TCP makes
sure that if one computer sends a message to another, this message will reach
the other computer.

However, the internet is a big bad place where messages get lost all
the time. A message is sent from one computer to another and sometimes
somewhere on the road it just disappears. The great thing about TCP is that
it makes absolutely sure that if a message is sent, it also arrives [8]. This is
done by sending acknowledgements upon receipt of a message and resending
information if no acknowledgement is received. This is a great thing, but
it may result in extreme latency. For every message an acknowledgement
is needed and resending takes a lot of time. Due to this, with TCP we
may occasionally get a latency of several seconds when a message needs to
be resent several times before it arrives. Very rarely it gets even worse:
if the path from one computer to another is clogged somewhere, messages
will be lost. Resending messages a lot of times will make the connection
even more clogged, so TCP waits a while before resending. This is great for
resolving clogged connections, but is terrible for the latency. In his article
about creating multiplayer functionality for X-Wing vs. Tie-Fighter, Peter
Lincroft reports occasional latencies of up to fifty seconds due to clogged
connections [9]. This will simply kill almost any game.

TCP also provides for another great service that is bad for games: it
makes sure that messages are received in the right order. So if one message
has been delayed for a few seconds, all other messages will be kept waiting
until that one message has been received. The last aspect of TCP we will
mention here is that it requires a connection before it sends data. So if two
computers need to communicate, they first establish a connection and then
start sending the data.

5.2 UDP

So, now that we know that TCP is useless for games because of the some-
times extreme latency, what is our alternative? In some respects, the al-
ternative is even worse: UDP. UDP does not guarantee us anything at all.
It attempts to send the message and if the message reaches the other com-
puter, then that is great, but if it does not, then UDP does nothing at all to
resend it. It does not inform the game that the message was lost and it does
not resend the message. So if it is really necessary that someone receives a
message, we will have to write our own acknowledgement system for that

10

message. When a game is coded well, however, most messages can be lost
without causing problems. For instance if a message contains the position
of an object and this position is sent ten times per second, then it is not
really a problem if one message is lost: another message comes in shortly
after and contains all the information needed. As UDP does not wait for the
path to clear and does not try to resend anything, you will never get really
big latencies and if your game is coded well, lost packages do not need to be
a very big problem.

Because UDP guarantees nothing, it also does not guarantee that mes-
sages are received in order. If one message is delayed a few seconds, it
may arrive after other messages that were sent later. This may confuse our
game, so we should use a counter to recognise delayed messages and be able
to delete them.

UDP does not need a connection, meaning that data can immediately be
sent. However, this means that anyone can send UDP messages to anyone,
allowing for outsiders to interfere in a game. Wrong and fake message sent
by hackers need to be taken care of to prevent hackers from taking over.

5.3 Headers

For each packet sent, the protocol adds some bytes with extra information.
For TCP this is about 40 bytes and for UDP this is about 28 bytes per
message [8]. Once a connection has been established, TCP can use much
smaller headers. The result is that on average TCP has smaller headers than
UDP. The existence of headers also means that sending lots of small messages
should be avoided: each one will require a header, strongly increasing the
required bandwidth when messages are too small. The solution to this is
simple: send more data per message instead of separately.

5.4 Conclusion

So, in the end, TCP is not really an option for games. Everyone uses UDP
and there is no way around it. We should take with lost or delayed messages,
though, as they might spoil our game.

6 A practical example

Once we have settled the requirements for our game and we have chosen the
basic architecture and the right protocol, actually designing the code for our
online game can begin. Exactly which message will be sent to which other
computer? Which computer is responsible for what? There is not one right
answer to these questions as this differs from game genre to game genre and
from game to game. Even if it is exactly clear what the requirements for

11

a specific game are, specialists might still argue about the exact implemen-
tation. In this chapter we will show one way of how an online game can
be made. For any specific game the choices made in this chapter should be
reconsidered.

The example we will see in this chapter is for a real time game with very
fast gameplay. Our game will be played by only a small number of players
at the same time: the maximum is 16 players or on very fast connections
maybe 32 players. Our game uses UDP and is made using the client/server
architecture where one special player is the server. To keep things simple,
our game ends if the server quits.

6.1 Responsibilities and communication during gameplay

In our example, the server is responsible for everything. If a player tries to
fire a rocket, the server checks whether this player has enough ammo to do
so and launches the rocket. After this, the server calculates the movement of
the rocket and checks whether it collides with another object. If it does so,
the server creates an explosion and adds damage to players close enough to
the explosion. The server also keeps track of the score and handles starting
and ending the game.

While the server is responsible for everything, it cannot handle user input
from all players, as only one player is the server. Therefore, the clients will
all handle the user input for their players themselves. The actions of the
players however are not performed by the clients, but instead are sent to the
server, which then proceeds to perform them. So if a player tries to walk to
the left, the client he is playing on will send a message to the server and the
server will move the player to the left if this is allowed.

To be able to play our game, all players will need the see and hear
what is happening in the game world. Drawing the world to the screen and
playing sound files is done by the clients and to do so they keep track of the
current state of the virtual world. The server makes sure they can by sending
messages to all clients about the game world. This includes messages like
“player one is walking with speed x in direction y from position z,” and “a
bonus item has just popped up on position x.” When a client receives a
message, he updates the state of his virtual game world and uses this to
play sounds and draw the player’s view.

6.2 Reliable and unreliable messages

We send all messages using UDP, but some messages do need reliability. For
instance if one player launches a rocket, all players must add a rocket to their
game state. If this message is not received, all further messages that update
this rocket cannot be processed as there is no rocket to update. This divides
messages into two groups: those that we must send reliably and those that

12

may be lost. To send messages reliably using UDP, we should create our own
code for sending acknowledgements upon receipt and resending messages if
they did not reach the other computer.

To improve performance, the programmer should take care to send as
many messages as possible unreliable. An example of how this can be done
is once more the rocket. If we send the movement since the last frame, a
lost package will be a problem: the exact position of the rocket is the sum
of the starting position and all the small movements. If instead all packages
contain the actual position of the rocket, it is no problem if a message is
lost. A new message will come shortly after, which will correct the position
of the rocket once more.

6.3 Finding and starting an online game

We have now settled communications during gameplay, but how to start a
game? Players need to know which other players want to play and they
should be connected to play together. The simple solution to this is that
one player hosts a game and calls his friends to tell them that he has done
so and what the IP-address of his computer is. Now the friends of the host
player type the IP-address in the game and the game can begin. In the past,
this was actually the way starting an online game was done. However, it is
very awkward and does not allow players to play with people they do not
know.

So, let’s look at the solution that is used today: the matchmaking server.
A matchmaking server is a server run by the game company that does noth-
ing more than connecting people who want to play with each other. The
domain name of the matchmaking server is added to the game during devel-
opment. When a player starts a server, his game uses this domain name to
tell it that a new game has been created. When another player wants to join
a game, his game uses the domain name to ask the matchmaking server for
a list of all games that can currently be joined. The player now chooses the
server he or she wishes to join and starts playing. The only drawback to this
is that the matchmaking server must run all the time. This costs money,
but fortunately it is not very expensive: the matchmaking server does not
have to host any games. It only has to keep track of which games are being
hosted at the moment, which takes much less bandwidth and processing
power.

We have our basic game working now. In the next chapter we will im-
prove it to decrease bandwidth usage and smoothen the jerking animations
due to latency.

13

Figure 4: Battle.net is an advanced matchmaking server created by Blizzard
for most of their games. This screenshot shows a menu to choose an online
game to join in Warcraft III. Battle.net does not only connect players who
want to play together, it also automatically updates the game with the latest
patches and keeps track of the victories of each player to create a list of
highscores.

7 Ways to improve performance

In the previous chapter we have seen an example of how to program the
online aspect of a game. Unfortunately, the choices made so far will not
result in a playable game: movement is jerky as it only happens when the
server sends a message to update the position of an object. Bandwidth usage
may also be very high when sixteen players are playing at the same time.

7.1 Smooth animations with extrapolation

In our design so far a client updates the position of an object only when
it receives a message from the server. The number of messages received
each second will usually be somewhere between four and twenty messages
per second. This is not enough: to make our game feel totally fluent and
fast, the number of times the screen is updated should be somewhere around
fifty frames per second. The exact minimum is a point of discussion among
gamers, but thirty frames per second is a bare minimum. Therefore, some-
thing will need to be done between the receipt of two messages. The wrong
solution is to simply send more messages, because this will take too much
bandwidth and at times the internet will only pass a few per second anyway.

There is good solution to this, though: extrapolation. With extrapola-

14

Figure 5: Extrapolation. The dashed line is the actual movement of the ob-
ject on the server. a. Only the movement on the server. b. The large dots
show where the object stands on the client after a message is recieved. No
extrapolation is done, so the object jumps from one position to another. c.
Extrapolation is used, so the object moves forward fluently and jumps to the
correct position when a message is received. d. Extrapolation and smoothen-
ing are used. The object fluently corrects its position when a message is
received.

tion clients update the state of their virtual world many times per second
with a guess about what will happen. When a message arrives from the
server, the client will correct this guess with the data from the server. For
example, if another player is running forward, the client will guess that
the player will keep running and will move the player forward a little each
frame. At the same time that player really started turning left, so on the
server this player turned left. When the client receives a message with this
new position, it corrects its guess with the real position.

Our basic implementation of extrapolation will still produce some flicker-
ing in the animation: when a guess was wrong, it is corrected at the instant
a message is received and this may make an object jump to a new position.
We can solve this using smoothing. This means applying the correction
in small steps, spread out over a few frames. The flickering will now be
completely gone. Also, remember that the interval at which messages are
received is very short, so the error of the guesses will always be small.

A more advanced form of extrapolation is dead reckoning, developed by
the United States Department of Defence [10]. Here the client does normal
extrapolation, while the server does something more advanced. The server
keeps track of two versions of the virtual world: how it really is and how
a client that uses extrapolation sees it. Only if the real version and the

15

extrapolated version differ too much is a message sent to the client. So if
the standard guess is that a player keeps running forward, the server will
only send an update to the client if the player did not run forward. This
greatly reduces bandwidth usage, although care should be taken as packets
may be lost and therefore the server may have a wrong idea of what the
client knows.

7.2 Latency on player actions

Our graphics look fluent now, but reactions to user input are still a bit slow.
This is due to the fact that when a player acts, his action is first sent to the
server, which processes it, then returned to the client and only then is its
result shown to the player. When latency is high, the player might notice
this. A solution to this is giving the client more responsibilities, although
this is a tricky solution, as the responsibilities of the server and each client
must be very clear. In the example here we will not do so, as this article is
only about the basics. Instead, it is important to note here that the problem
is smaller then it may seem: latency is not very high on modern internet
connections, so if our game is not extremely fast, players will usually not
notice the delay.

7.3 Reducing bandwidth usage

So far we have not said much about bandwidth. Some policy and care to
keep bandwidth usage low is necessary though. In this section we will see
some of the many improvements possible. The first thing to notice here
is that messages with updates should not be sent at every iteration of the
game loop. The game may draw to the screen up to 80 times per second,
while messages should not be sent that often. Therefore, we keep track of
the elapsed time and only send a maximum number of updates each second.
The number of updates per second will vary for different game types and
different internet connections, so an exact amount per second cannot be
given here.

Another improvement is to combine several messages into one. Many
events can be put into one message instead of separate messages for each
event. This will save us a lot of bandwidth as each message has some
overhead due to its header.

Many moving objects in our game world are only decorations and have
no influence on the actual gameplay. We can use this to optimise bandwidth
usage a bit further: such objects can be fully calculated by the clients and
need not receive updates from the server, or maybe only very occasionally.
Examples of this are the movement of clouds and the waves in the water.
Some other things only need to receive an update occasionally. If a plane
flies by in the air, this plain should fly by on each client, as players may

16

Figure 6: In large areas, only objects that are close to the player need to be
updated frequently. Here object 1 is very close and therefore must be updated
most frequently, while objects 2 and 3 may be updated less frequently. Object
4 is behind a thick wall, so the player need not receive information about it
at all.

be sitting in the same room and may notice that there is a plane on one
computer and not on another. The exact position however is not important,
so one update-message every few seconds is enough. Some other events
are triggered, like explosions. The exact animation of an explosion is not
important, but the explosion should happen at the same time on each client.
This can be done by only sending a message when the explosion starts.

If our virtual world is very large, like in a massive multiplayer game,
players will only see a small part of this world. The server can keep track
of what every client sees and only send information that is relevant to the
player. Information is relevant if the player may see or hear it, or if the
player may be hit by it. We can add to this that things that are close
to the player should be updated more frequently than things that are far
away. Even if the player can look very far, the precision of the objects in
the distance need not be high.

One final optimisation is to compress data. We can do this in many
ways, for instance by giving frequently used text message a short code that
can be sent instead of the actual message. A more sophisticated method is
using Huffman encoding, which replaces frequently occurring byte-sequences
with shorter ones and less frequent byte-sequences with longer once. This
may result in savings of 20% to 90% [11], although 20% will be rare with
the relatively short messages in games.

So far we have only discussed a few of the many possible optimisations
and improvements to lower bandwidth usage and improve the smoothness of

17

the gaming experience. Many more exist and can be devised. Programmers
are advised to take the time to come up with their own optimisations for
specific games, as much performance can be gained here.

8 Cheaters and libraries

In the last chapter we have made an online game that works and keeps within
bandwidth limits. However, our game is still unfinished, for hackers will be
able to spoil our game easily by cheating. Another subject that has not been
discussed so far is libraries that help create online games. These topics are
both too large to fully discuss in this article, so only a short introduction
will be given here.

8.1 Beating cheaters

Most online games are based on competition: players play against each other
and try to achieve the best score. Competing is only fun when chances are
even. If a player always wins because he cheats, his opponents will not enjoy
the game anymore and will stop playing. If our game is to be fun, we must
prevent cheating as much as possible.

Cheating in games can be done in two ways. The simple way is that a
game may contain a bug that can be used to get an advantage. There may
for instance be a wall that the player can walk through because collision
detection contains an error. This is simply a bug and can be solved by
testing he game thoroughly before releasing it.

The other kind of cheating is much harder to beat: hackers. Hackers may
change the program, alter parameters, spoil communications or do many
other things to cheat. Even if a game is coded perfectly well and contains
no bugs at all, hackers may still alter the game to cheat. Defending an online
game against hackers is an immensely complex task. For a good introduction
into the techniques hackers use to cheat and some defences against them, the
reader is advised to read “How to Hurt the Hackers: The Scoop on Internet
Cheating and How You Can Combat It” [12] by Matt Pritchard, which is
an excellent introduction into the topic.

To show just a little example of the problem, imagine a game where
players sneak up on each other in dark dungeons. A hacker may write
a small program that alters the video drivers and adds light to this dark
dungeon. A player using this cheat will easily win as he will see his enemies
coming. The solution to this cheat is to check whether the settings for the
video drivers have been changed during gameplay and to reset them if this
has happened. However, the hacker may now search for the part of the
game that does this check and disable it. Now something will be needed to
check whether the video settings inspection mechanism is still working, but
hackers may hack that too. . .

18

It is not possible to write a game that cannot be hacked: hackers can
always find some way to create a cheat. The best we can do is to make
hacking as hard as possible and release patches that fix things whenever
cheats have been found.

8.2 Using programming libraries to ease the work

When we create an online game, we must take care of many things, as we
have seen so far. A little help would spare us a lot of time and effort.
Fortunately, this help is available and comes in the shape of programming
libraries. These libraries offer functionality like sending messages using UDP,
both reliable and unreliable, easily creating matchmaking servers, encrypt-
ing messages to give hackers a hard time and compressing messages to save
bandwidth. Both Playstation 2, X-Box and Gamecube offer programming
libraries that help create online games [3]. For the pc there is the open
source library RakNet, which can do a lot of work for the programmer [13].
RakNet is free for small products and can be licensed for commercial use.
Many other tools and libraries exist to help us and programmers are advised
to use them to ease both programming and debugging.

19

9 Conclusion

Multiplayer games are big business and many game design companies are
working on them. Creating an online game is not an easy job, as the game
must play smoothly without taking too much bandwidth and hackers should
be kept off. In this article we have seen the basics of how to program
the online functionality of a game. To do so, we started by determining
the requirements of our game. After this the basic architecture has been
chosen, which usually is client/server. Now we decided which computer is
responsible for what and which messages are sent to which player. In almost
all games these messages should be sent using the UDP-protocol. When the
basics were settled, we made a number of improvements: our game should
look fluent, even with high latency, and bandwidth usage must be limited.
We used extrapolation, compression and checking what is relevant for which
player to do this. Finally, if our game is to be a real success, defences must
be added against cheaters.

If all of the above is done well, a great game may be made that will offer
players the incredible experience of playing with people from all over the
world!

20

References

[1] David Jenkins. World of warcraft hits 2 million subscribers.
http://www.gamasutra.com/php-bin/news_index.php?story=5696,
2005. (last visited on July 6, 2005).

[2] Blizzard. World of warcraft subscription details.
https://www.wow-europe.com/en/requirements/subscription.html,
2005. (last visited on July 6, 2005).

[3] Pete Isensee and Steve Ganem. Developing online console games.
http://www.gamasutra.com/features/20030328/isensee_01.shtml,
2003. (last visited on July 6, 2005).

[4] Franklin Paul. Microsoft sees $100 million first day for ’halo 2’ game.
http://in.tech.yahoo.com/041110/137/2hsn2.html, 2004. (last
visited on July 6, 2005).

[5] HCCNet. Abonnementen en prijzen.
http://adsl.hccnet.nl, 2005. (last visited on July 6, 2005).

[6] Dan Royer. Network game programming.
http://www.flipcode.com/articles/network_part01.shtml, 1999.
(last visited on July 6, 2005).

[7] Paul Bettner and Mark Terrano. Gdc 2001: 1500 archers on a 28.8:
Network programming in age of empires and beyond.
http://www.gamasutra.com/features/20010322/terrano_01.htm,
2001. (last visited on July 6, 2005).

[8] Andrew S. Tanenbaum. Computer networks. Pearson Education, Inc.,
New Jersey, 2003. ISBN 0-13-038488-7.

[9] Peter Lincroft. The internet sucks: Or, what i learned coding x-wing
vs. tie fighter.
http://www.gamasutra.com/features/19990903/lincroft_01.htm,
1999. (last visited on July 6, 2005).

[10] Jesse Aronson. Dead reckoning: Latency hiding for networked games.
http://www.gamasutra.com/features/19970919/aronson_01.htm,
1997. (last visited on July 6, 2005).

[11] Ronald L. Rivest Thomas H. Cormen, Charles E Leiserson and Clif-
ford Stein. Introduction to algorithms, second edition. The MIT Press,
Massachusetts, 2001. ISBN 0-262-53196-8.

[12] Matt Pritchard. How to hurt the hackers: The scoop on internet
cheating and how you can combat it.

21

http://www.gamasutra.com/features/20000724/pritchard_01.htm,
2000. (last visited on July 6, 2005).

[13] Rakkar (real name unknown). Raknet manual.
http://www.rakkarsoft.com/raknet/manual/index.html, 2004.
(last visited on July 6, 2005).

The image on the cover is a cartoon version of Halo’s Master Chief and
is taken from www.halobabies.net

22

